M.Tech. in Renewable Energy Technology (I Year Courses)

Teaching and Examination Scheme I Year I Semester: M.Tech. (RET)

S. No.	Course Code	Course Name	Category	Tea	achi ben	ng 1e			Mark	S	Credit
	Couc			L	Т	R P	Exam	CIE	SEE	Total	
				_	_	-	Hrs				
1	MEPL101	Renewable Energy	PCC	3	0	0	3	40	60	100	3
		Sources	Daa		0	0		40	60	100	
2	MEPL102	Solar Photovoltaics	PCC	3	0	0	3	40	60	100	3
		Elective-I:									
	MEPL111	a. Solar Heating &	PEC	3	0	0	3	40	60	100	3
		Cooling	120	5	Ŭ	Ŭ	5	10	00	100	Ũ
3	MEPL112	b. Hydrogen									
		Energy									
	MEPL113	c. Energy									
		Conservation &									
		Management									
		Elective-II:									
	MEPL114	a. Energy Storage	PEC	3	0	0	3	40	60	100	3
		Technology									
4	MEPL115	b. Biofuel									
		Technology &									
		Mechanism									
	MEPL116	c. Energy									
		Economics &									
		Policy Making									
5	NP40.01	Optimization	MCC	3	0	0	3	40	60	100	3
		Techniques	NGG					40	60	100	•
6	NP99.XX	Audit Course	MCC	-	-	-	3	40	60	100	0
7	MEPP130	Renewable	PCC	0	0	4	4	60	40	100	2
		Technology Lab									
8	MEPP131	Solar Photovoltaic	PCC	0	0	4	4	60	40	100	2
		Lab									
9	MEPA100	Social Outreach,	SODECA							100	1
		Discipline &									
		Extra Curricular									
		Activities									
		(SODECA)		•							•
Total Credit						20					

<u>Syllabus</u>		
Name of the Programme: M.Tech. in Renewable	Year: I	Semester: I
Energy Technology		
Course Name: Renewable Energy Sources	Course Code: MEPL101	Credit : : 03
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 03 hours	Teaching Scheme: 3L+0T+0P	

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Energy Sources & Availability: World Energy scenario and India Energy Scenario,	3
	Conventional and non-conventional, renewable and non-renewable sources of energy,	
	prospects, perspectives & advantages	
3	Solar Energy: Solar constant, solar radiation geometry, local solar time, day length, solar	7
	radiation measurement, radiation on an inclined surface, solar radiation data, & solar	
	charts	
4	Wind Energy: Wind as a source of energy, Characteristics of wind, wind data. Horizontal	7
	& vertical axis wind turbines	
5	Biomass Energy: Introduction to biomass, biofuels & their heat content, biomass	9
	conversion technologies. Aerobic & anaerobic digester, Factors affecting bio-digestion,	
	biogas plants-types, description, utilization of biogas, & use in I.C. engines. Biomass	
	gasification: Gasifier types, direct thermal application of gasifiers. Advantages &	
	problems in the development of gasifiers	
6	Other Renewable Energy Sources-I: Geothermal Energy: Status & estimates,	9
	geothermal resources, geothermal systems & their characteristics. Ocean Thermal Energy	
	Conversion (OTEC). Tidal energy. Wave energy, Hydrogen energy	
7	Other Renewable Energy Sources- II: Fuel Cells: Principle & classification, types,	9
	conversion, efficiency, polarization, & advantages. Magneto Hydrodynamic (MHD)	
	power conversion: Principle, types, closed & open cycle system, materials. thermionic	
	power conversion, thermoelectric power conversion	
	Total	45

Text Books:

- 1. G. D. Rai, "Non-Conventional Sources of Energy", Khanna Publishers.
- 2. D. P. Kothari, K. C. Singhal, and Rakesh Ranjan, "Renewable Energy Sources and Emerging Technologies" PHI.
- S. P. Sukhatme and J. K. Nayak, "Solar Energy: Principles of Thermal Collection and Storage" TMH.

Reference Books:

- 1. Godfrey Boyle, "Renewable Energy" Oxford University Press.
- 2. G. D. Rai, "Solar Energy Utilization" Khanna Publishers.

- 1. Engineering Thermodynamics
- 2. Heat and mass transfer

.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL101.1	Describe various conventional and non-	BL2	3.1, 3.2	1.1, 1.2, 1.3,
	conventional sources of energy.			1.4
MEPL101.2	Analyse various parameters of solar radiation	BL4	3.1, 3.2	1.1, 1.2, 1.3,
	geometry.			1.4, 1.6
MEPL101.3	Explain types and characteristics of wind and	BL2	3.1, 3.2	1.1, 1.2, 1.3,
	wind turbines.			1.4
MEPL101.4	Describe various sources of biomass energy and	BL2	3.1, 3.2	1.1, 1.2, 1.3,
	its application in IC engines.			1.4
MEPL101.5	Compare the merits, demerits and justify the	BL3	3.1, 3.2	1.1, 1.2, 1.3,
	selection of various non-conventional energy			1.4, 1.6
	sources for particular application.			

Course Code	PO1	PO2	PO3	PSO1	PSO2
MEPL101.1	-	-	3	3	-
MEPL101.2	-	-	3	3	-
MEPL101.3	-	-	3	3	-
MEPL101.4	-	-	3	3	-
MEPL101.5	-	-	3	3	-

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: I	
Energy Technology			
Course Name: Solar Photovoltaics	Course Code: MEPL102	Credit : : 03	
Max Marks: 100	CIE: 40	SEE: 60	
End Term Exam Time: 03 hours	Teaching Scheme: 3L+0T+0P		

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Photovoltaic effect: Principle of direct solar energy conversion into electricity in a solar	9
	cell. Semiconductor properties, energy levels, basic equations. Solar cell, p-n junction,	
	structure. I-V characteristics of a PV module, maximum power point, cell efficiency, fill	
	factor, effect of irradiation and temperature	
3	Commercial solar cells: Production process of single crystalline silicon cells, multi-	9
	crystalline silicon cells, amorphous silicon, cadmium telluride, copper indium gallium	
	diselenide cells, and high-efficiency solar cells. Design of solar PV systems and cost	
	estimation. A case study of commercial buildings.	
4	Classification: Central Power Station System, Distributed PV System, Standalone PV	9
	system, Grid Interactive PV System, hybrid solar PV system, concentrator solar	
	photovoltaic. System components: PV arrays, inverters, batteries, charge controls, and	
	net-meters. PV array installation, operation, costs, reliability	
5	Building-integrated photovoltaic units, grid-interacting central power stations, stand-	9
	alone devices for distributed power supply in remote and rural areas, stand-alone PV	
	systems Home lighting and other appliances, solar water pumping systems. Case study	
	of residential buildings.	
6	Socio-economic and environmental analysis of photovoltaic systems	8
	Total	45

Text Books:

1. Chetan Singh Solanki, "Solar Photovoltaic: Fundamentals, Technologies and Application", PHI.

- 2. A.R. Jha, "Solar Cell Technology and Applications", CRC Press.
- 3. N.K. Bansal, "Non-Conventional Energy Sources", Vikas Publishing House.

Reference Books:

1. John Balfour, Michael Shaw, and Sharlene Jarosek, "Introduction to Photovoltaics", Jones and Bartlett Publishers.

2. Antonio Luque and Viacheslav Andreev, "Concentrator Photovoltaic", Springer.

- 1. Engineering Thermodynamics
- 2. Engineering Mechanics
- 3. Engineering Chemistry
- 4. Heat and Mass Transfer

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL102.1	Explain the photovoltaic effect, I-V	BL2	3.1, 3.2	1.2, 1.3, 1.4,
	characteristics of the PV module, and the			1.6, 2.2, 2.3,
	effect of irradiation & temperature on it.			2.6, 2.7
MEPL102.2	Examine the various types of commercial	BL3	3.1, 3.2	1.2, 1.3, 1.4,
	solar cells.			1.6, 2.2, 2.3,
				2.6, 2.7
MEPL102.3	Classify various types of PV systems, PV	BL3	3.1, 3.2	1.2, 1.3, 1.4,
	array installations, operation, costs, and			1.6, 2.2, 2.3,
	reliability.			2.6, 2.7
MEPL102.4	Explain integrated PV units with other	BL3	3.1, 3.2	1.2, 1.3, 1.4,
	systems and applications of PV systems in			1.6, 2.2, 2.3,
	various areas.			2.6, 2.7
MEPL102.5	Analyze the socio-economic and	BL4	3.1, 3.2	1.2, 1.3, 1.4,
	environmental effects of PV systems.			1.6, 2.2, 2.3,
				2.6, 2.7

Course Code	PO1	PO2	PO3	PSO1	PSO2
MEPL102.1	-	-	3	3	2
MEPL102.2	-	-	3	3	2
MEPL102.3	-	-	3	3	2
MEPL102.4	-	-	3	3	2
MEPL102.5	-	-	3	3	2

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: I	
Energy Technology			
Course Name: Solar Heating & Cooling	Course Code: MEPL111	Credit : : 03	
Max Marks: 100	CIE: 40	SEE: 60	
End Term Exam Time: 03 hours	Teaching Scheme: 3L+0T+0P		

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Potential and scope of solar heating and cooling, Types of solar heating and cooling	9
	systems, Solar collectors and storage systems for solar refrigeration and air-conditioning.	
	Economics of heating and cooling systems	
3	Building heating and cooling: Heat transmission in buildings - Bioclimatic	9
	classification. Passive heating concepts - Direct heat gain, indirect heat gain, isolated	
	gain, and sunspaces. Passive cooling concepts - Evaporative cooling, radiative cooling,	
	Energy efficient landscape design - Concept of solar temperature and its significance,	
	calculation of instantaneous heat gain through the building envelope	
4	Solar Heating Systems: solar water heating systems commercial and domestic, solar	9
	thermal collectors: types, overall heat loss coefficient, heat capacity effect - Thermal	
	analysis solar air heaters, Greenhouse solar dryer, solar pond, case study on any of two	
	above.	
5	Solar thermo-mechanical refrigeration system: Carnot refrigeration cycle, solar	8
	electric compression air conditioning, simple Rankine cycle air conditioning system	
6	Solar Cooling Systems: Solar vapor absorption cooling systems, solar vapor adsorption	9
	cooling system: classification, design, thermodynamic analysis, Calculations of COP and	
	second law efficiency, Solar desiccant dehumidification, Case study on solar powered	
	vapor absorption/ adsorption cooling systems	
	Total	45

Text Books:

- 1. Kalogirou S.A., "Solar Energy Engineering: Processes and Systems", Academic Press, 2009.
- 2. Vogel. W., Kalb H., "Large-Scale Solar Thermal Power Technologies", Wiley, 2010.

Reference Books:

- 1. Duffie J. A., Beckman.W. A., "Solar Engineering of Thermal Process", Wiley, 3rd ed. 2006.
- 2. Khartchenko N.V., "Green Power: Eco-Friendly Energy Engineering", Tech Books, Delhi, 2004.
- 3. Goswami D.Y., Kreith F, Kreider J.F., "Principles of Solar Engineering", 2nd ed., Taylor and Francis, 2000, Indian reprint, 2003.
- 4. Garg H.P, Prakash J., "Solar Energy Fundamentals and Applications", Tata McGraw-Hill, 2005.
- 5. Laughton C., "Solar Domestic Water Heating", Earthscan, 2010.
- 6. Yannas S., Erell E., Molina J., Roof Cooling Techniques: Design Handbook, Earthscan, 2006.

- 1. Engineering Thermodynamics
- 2. Heat Transfer
- 3. Refrigeration and Air Conditioning

.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL111.1	Explore the potential of passive heating and	BL3	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4, 2.6
	cooling for buildings.		2.2, 3.1, 3.3	
MEPL111.2	Apply different techniques of passive heating	BL3	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4, 2.6
	and cooling for buildings.		2.2, 3.1, 3.3	
MEPL111.3	Analyze the performance parameters of solar	BL4	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4, 2.6
	flat plate collectors.		2.2, 3.1, 3.3	
MEPL111.4	Analyze thermodynamic cycles for solar	BL4	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4, 2.6
	thermo-mechanical refrigeration.		2.2, 3.1, 3.3	
MEPL111.5	Investigate the thermodynamic cycle for	BL4	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4, 2.6
	vapour absorption refrigeration systems.		2.2, 3.1, 3.3	

COs/POs-PSOs	PO 1	PO 2	PO 3	PSO 1	PSO 2
MEPL111.1	3	2	2	-	2
MEPL111.2	3	2	2	-	2
MEPL111.3	3	2	2	-	2
MEPL111.4	3	2	2	-	2
MEPL111.5	3	2	2	-	2

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: I
Energy Technology		
Course Name: Hydrogen Energy	Course Code: MEPL112	Credit : : 03
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 03 hours	Teaching Scheme: 3L+0T+0P	

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Introduction of Hydrogen Energy Systems: Hydrogen pathways - current uses,	8
	infrastructure requirement for hydrogen production, Hydrogen production power plants.	
	Comparison of physical and chemical properties of hydrogen with conventional liquid	
	and gaseous fuels, safety requirements	
3	Hydrogen Production Processes: Thermal-Steam Reformation – Thermo chemical	9
	Water Splitting – Gasification – Pyrolysis, Nuclear thermo catalytic and partial oxidation	
	methods. Electrochemical - Electrolysis - Photo electro chemical. Biological -	
	Anaerobic Digestion - Fermentative Micro-organisms. Renewable Sources: Hydrogen	
	production methods using solar energy and wind energy.	
4	Hydrogen Storage: Physical and chemical properties - General storage methods,	9
	compressed storage - Composite cylinders - Glass micro sphere storage - Zeolites, Metal	
	hydride storage, chemical hydride storage, and cryogenic storage	
5	Hydrogen Utilization: I.C. Engines: performance, emission and combustion	9
	characteristics of Spark Ignition engines, back firing, knocking, volumetric efficiency,	
	hydrogen manifold and direct injection, fumigation, NOx controlling techniques, dual	
	fuel engine, durability studies, field trials, emissions and climate change. Gas turbines,	
	hydrogen burners, power plants, refineries, domestic and marine applications. Hydrogen	
	fuel quality, case study on hydrogen and its blend as a fuel in automotive vehicles.	
6	Hydrogen Safety: Safety barrier diagram, risk analysis, safety in handling and refueling	9
	station, safety in vehicular and stationary applications, fire detecting system, flame trap,	
	safety management, and simulation of crash tests, containment cylinders for hydrogen of	
	various grades.	
	Total	45

Text Books:

1. Ram B. Gupta, "Hydrogen Fuel: Production, Transport, and Storage", CRC Press.

Reference Books:

1. Michael Ball and Martin Wietschel, "The Hydrogen Economy: Opportunities and Challenges".

2. M. K. G. Babu and K. A. Subramanian, "Alternative Transportation Fuels: Utilization in Combustion Engines".

3. Krishnan Rajeshwar, Robert McConnell, and Stuart Licht, "Solar Hydrogen Generation: Toward a Renewable Energy Future". Ram B. Gupta, "Hydrogen Fuel: Production, Transport, and Storage".

Prerequisite:

1. Knowledge of I.C. Engines, Engineering Chemistry.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL112.1	Identify the potential and use of	BL2	1.1, 1.2, 2.1,	1.1, 1.2, 1.3,
	hydrogen energy.		2.2, 2.4, 3.1,	1.4, 2.1, 2.2,
			3.2	2.3, 2.4, 2.6
MEPL112.2	Compare the various techniques of	BL2	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	hydrogen production.		2.1, 2.2, 2.3,	1.4, 1.6, 2.1,
			2.4, 3.1, 3.2	2.2, 2.3, 2.4,
				2.6
MEPL112.3	Evaluate the feasibility and long-term	BL5	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	stability of various hydrogen storage		2.1, 2.2, 2.3,	1.4, 2.1, 2.2,
	methods.		2.4, 3.1, 3.2	2.3, 2.4, 2.6
MEPL112.4	Analyze field performance of hydrogen-	BL4	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	operated engines, turbines, and power		2.1, 2.2, 2.4,	1.4, 2.1, 2.2,
	plants.		3.1, 3.2	2.3, 2.4, 2.6
MEPL112.5	Apply safety management practices for	BL3	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	hydrogen utilities.		2.1, 2.2, 2.3,	1.4, 1.6, 2.1,
			2.4, 3.1, 3.2	2.2, 2.3, 2.4,
				2.6

Course	PO1	PO2	PO3	PSO1	PSO2
Code					
MEPL112.1	3	3	3	3	-
MEPL112.2	3	3	3	3	-
MEPL112.3	3	3	3	3	-
MEPL112.4	3	3	3	3	-
MEPL112.5	3	3	3	3	-

Name of the Programme: M.Tech. in Renewable Energy	Year: I	Semester: I
Technology		
Course Name: Energy Conservation & Management	Course Code: MEPL113	Credit: 03
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 03 hours	Teaching Scheme: 3L+0T+0P	

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Energy Scenario: Classification of Energy, Indian energy scenario, Sectoral energy consumption	8
	(domestic, industrial, and other sectors), energy needs of the growing economy, energy intensity,	
	long-term energy scenario, energy pricing, energy security, energy conservation and its	
	importance, energy strategy for the future	
3	Energy Conservation in Electrical Utilities: Electricity billing, electrical load management and	9
	maximum demand control, power factor improvement and its benefit, selection and location of	
	capacitors, performance assessment of PF capacitors, distribution and transformer losses	
	Electric motors: Types, losses in induction motors, motor efficiency, factors affecting motor	
	performance, rewinding and motor replacement issues, energy saving opportunities with energy	
	efficient motors	
	Illumination: Lux, Lumens, types of lighting, history, efficacy, LED lighting and scope of energy	
	conservation in lighting, comparison of illumination level and energy consumption.	
4	Energy Efficiency in Thermal Utilities and systems:	9
	Thermal systems, Boilers, Furnaces, Heat exchangers, Steam distribution and usage, steam traps,	
	condensate recovery, flash steam utilization; Insulation & Refractories. Waste heat recovery and	
	Cogeneration systems, conservation opportunities.	
5	Heating, Ventilation, Air-Conditioning (HVAC) and Refrigeration System: Factors affecting	9
	Refrigeration and Air conditioning system, Energy saving opportunities in Cooling Towers,	
	Vapour absorption refrigeration system, heat pump, vapor compression refrigeration system,	
	window and split room air conditioners. Star-labeled pumps, cold storage refrigeration, and	
	humidification system, ASHRAE and ISHRAE standards.	
6	Energy Conservation Acts and related policies: Energy conservation Act 2001 and its features,	9
	notifications under the Act, role of Bureau of Energy Efficiency (BEE), Star rating of electrical	
	appliances, State Designated Agencies, Electricity Act 2003, ECBC code for Building	
	Construction, IGBC Guidelines.	
	Energy and environment, air pollution, climate change: United Nations Framework	
	Convention on Climate Change (UNFCC), Kyoto Protocol, Conference of Parties (COP), Clean	
	Development Mechanism (CDM), Prototype Carbon Fund (PCF)	
	Total	45

Text Books:

1. Bureau of Energy Efficiency Reference book: No.1, 2, 3 4

2. Dale R Patrick, Stephen W Fardo , Energy Conservation Guidebook, 2nd Edition, CRC Press.

Reference Books:

- 1. Albert Thumann, Handbook of Energy Audits, The Fairmont Press, 6th Edition.
- 2. W.C. Turner, Energy Management Handbook, John Wiley and Sons.
- 3. Callaghan P.W., "Design and Management for Energy Conservation", Pergamum Press, Oxford.
- 4. Murphy W.R. and McKay G., "Energy Management", Butterworth's, London, 1987.

- 1. Electrical Energy Conservation and Auditing
- 2. Basics of Mechanical & Electrical Engineering
- 3. Energy and Environment

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	PO	PSO
Code		Level	Performance	Performance Indicators
			Indicators	mulcators
MEPL113.1	Recognize the importance of energy	BL3	1.1, 1.2, 2.1,	1.1, 1.2, 1.3,
	conservation and management.		2.2, 2.4, 3.1,	1.4, 2.1, 2.2,
			3.2	2.3, 2.4, 2.6
MEPL113.2	Identify opportunities for energy	BL2	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	conservation within electrical utilities.		2.1, 2.2, 2.3,	1.4, 1.6, 2.1,
			2.4, 3.1, 3.2	2.2, 2.3, 2.4,
				2.6
MEPL113.3	Analyze energy-efficient strategies in	BL4	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	thermal utilities.		2.1, 2.2, 2.3,	1.4, 2.1, 2.2,
			2.4, 3.1, 3.2	2.3, 2.4, 2.6
MEPL113.4	Apply energy-saving strategies in HVAC	BL3	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	and refrigeration systems.		2.1, 2.2, 2.4,	1.4, 2.1, 2.2,
			3.1, 3.2	2.3, 2.4, 2.6
MEPL113.5	Assess initiatives or policies related to	BL4	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	energy, environment, air pollution, and		2.1, 2.2, 2.3,	1.4, 1.6, 2.1,
	climate change.		2.4, 3.1, 3.2	2.2, 2.3, 2.4,
				2.6

Course Code	PO1	PO2	PO3	PSO1	PSO2
MEPL113.1	3	3	3	3	3
MEPL113.2	3	3	3	3	3
MEPL113.3	3	3	3	3	3
MEPL113.4	3	3	3	3	3
MEPL113.5	3	3	3	3	3

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: I
Energy Technology		
Course Name: Energy Storage Technology	Course Code: MEPL114	Credit : : 03
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 03 hours	Teaching Scheme: 3L+0T+0F)

Module	Contents	Hours
1 1	Introduction: Objective Scope Outcome of the Course and Prerequisite	1
1	Introduction. Objective, Scope, Outcome of the Course and Freequisite	1
2	Energy storage technology: requirement for energy storage, Current status, Future	7
	prospect of storage, Aspects for adoption among various energy storage storage	
	technology.	
3	Mechanical energy storage systems: Flywheel energy storage (FES), pumped	9
	hydropower storage (PHS), and compressed-air energy storage (CAES). Comparison and	
	application of state-of-arts including principle, function and deployments. Technical	
	characteristics in terms of power rating and discharge time, storage duration, energy	
	efficiency, energy density, cycle life and life time, etc. Case study on any two from the	
	above.	
4	Electrochemical energy storage: Battery, Fuel Cell, and Capacitor. Comparison and	9
	application of state-of-arts including principle, function and deployments. Technical	
	characteristics of various electrochemical energy storage systems. Capacitor-battery	
	hybrid systems. Advanced technologies in electrochemical energy storage.	
5	Hydrogen energy: Hydrogen economy, Hydrogen production, Hydrogen	9
	Transportation, and Hydrogen storage methods, Utilization of hydrogen in fuel cells and	
	fuel for automotive applications.	
6	Thermal energy storage: Sensible heat storage (SHS), latent heat storage (LHS) or	10
	phase-change materials (PCMs), and thermo-chemical energy storage (TCES).	
	Comparison and technical characteristics, Aspects of selection of PCMs for any	
	application such as availability, thermo-physical properties, cost, disposal, etc. Hybrid	
	PCMs energy storage.	
	Total	45

Text Books:

- 1. B. H. Khan, "Non-Conventional Energy Resources", McGraw Hill.
- 2. S. Singh, "Energy Storage Systems: An Introduction", Nova Science Publishers.
- 3. R.A. Huggins, "Energy Storage", Springer.

Reference Books:

- 1. G. D. Rai, "Non-Conventional Sources of Energy", Khanna Publishers.
- 2. V.K. Mathew, "Energy Storage Systems", Springer.
- 3. M. Sterner, Stadler, "Handbook of Energy Storage", Springer.

- 1. Engineering Thermodynamics
- 2. Engineering Mechanics
- 3. Engineering Chemistry
- 4. Heat and Mass Transfer

.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL114.1	Identify the requirement, current status and	BL3	1.1, 1.2, 2.1,	1.1, 1.2, 1.3, 1.4,
	future prospectus of energy storage.		2.3, 3.1	2.1, 2.2, 2.3, 2.4
MEPL114.2	Compare various mechanical energy storage	BL2	1.1, 1.2, 2.1,	1.1, 1.2, 1.3, 1.4,
	systems.		2.3, 3.1	2.1, 2.2, 2.3, 2.4
MEPL114.3	Analyze technical characteristics of various	BL4	1.1, 1.2, 2.1,	1.1, 1.2, 1.3, 1.4,
	electrochemical energy storage systems.		2.3, 3.1	2.1, 2.2, 2.3, 2.4
MEPL114.4	Discuss various techno-economical aspects	BL2	1.1, 1.2, 2.1,	1.1, 1.2, 1.3, 1.4,
	of the production and storage of hydrogen.		2.3, 3.1	2.1, 2.2, 2.3, 2.4
MEPL114.5	Compare various thermal energy storage	BL2	1.1, 1.2, 2.1,	1.1, 1.2, 1.3, 1.4,
	technologies.		2.3, 3.1	2.1, 2.2, 2.3, 2.4

Course	PO1	PO2	PO3	PSO1	PSO2
Code					
MEPL114.1	3	2	1	3	2
MEPL114.2	3	2	1	3	2
MEPL114.3	3	2	1	3	2
MEPL114.4	3	2	1	3	2
MEPL114.5	3	2	1	3	2

Name of the Programme: M.Tech. in Renewable Energy	Year: I	Semester: I
Technology		
Course Name: Biofuel Technology & Mechanism	Course Code: MEPL115	Credit : : 03
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 03 hours	Teaching Scheme: 3L+0T+0P	

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Biofuel Technology: Introduction, the potential of biofuels in the energy scenario of	8
	India, Biofuels in relation to the environment, ecology, agriculture, health and sanitation,	
	Factors enhancing/inhibiting biofuel production	
3	Bio-chemical and Microbial Aspects of Biogas: Biogas mechanism, enhancement of	9
	biogas production by different additives (Chemicals, organic substances, enzymes), pre-	
	treatment process, etc. Scrubbing process, biogas bottling, biogas liquefaction. Uses,	
	merits and demerits of biogas.	
4	Biogas Plants and Applications: Types of biogas plants, design of a biogas plant (cow	9
	dung and organic waste) and structural strength, selection of site and size, construction	
	technique, material requirement, recent advances in high rate bio-methanation reactors	
	design and material, night soil linked biogas plant. Cold condition biogas plant design	
	concept, cost and financial viability. Principles of dual fuel biogas engines, its limitations,	
	biogas appliances including thermal and cooking efficiency test. Comparison of various	
	running biogas plants.	
5	Production and Applications of Biodiesel: Trans-esterification reaction and process,	9
	Raw materials and pre-treatment, Environmental conditions and operational process,	
	Separation and purification stages, Qualities of biodiesel and associated regulations,	
	properties of biodiesel, application in diesel engines and environmental effects, economic	
	impact of biodiesel	
6	Alcohols and Biofuels: Types of feedstock for alcohols and biofuels and their	9
	availability. Alcohols and other oxygenated biofuels-applications, advantages and	
	limitations. Physico-chemical properties of biofuels. Combustion characteristics of	
	biofuels in spark ignition and compression ignition engines.	
	Total	45

Text Books:

1. B.T. Nijaguna, "Biogas Technology", New Age International Publishers.

2. N. S. Rathore and A. K. Kurchania, "Biomethanation Technology", Apex Publishing House, 2007.

Reference Books:

- 1. R. S. Khoiyangbam, Navindu Gupta and Sushil Kumar, "Biogas Technology: Towards Sustainable Development", TERI.
- 2. V. Ganesan, "Internal Combustion Engines", TMH.
- 3. Samir Sarkar ,"Fuels and Combustion", University Press.

Prerequisite:

1. Knowledge of I.C. Engines

.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL115.1	Explore the significance of biofuels in the	BL3	1.1, 2.1, 2.2, 2.3,	1.1, 1.2, 1.3,
	current energy scenario.		2.4, 3.1, 3.3	1.4, 1.5, 1.6, 2.2
MEPL115.2	Compare different biogas production	BL2	1.1, 2.1, 2.2, 2.3,	1.1, 1.2, 1.3,
	techniques, their merits and demerits.		2.4, 3.1, 3.3	1.4, 1.5, 1.6, 2.2
MEPL115.3	Design different types of biogas plants on	BL3	1.1, 2.1, 2.2, 2.3,	1.1, 1.2, 1.3,
	the basis of technical and economic		2.4, 3.1, 3.3	1.4, 1.5, 1.6, 2.2
	viability.			
MEPL115.4	Describe the production methods and	BL2	1.1, 2.1, 2.2, 2.3,	1.1, 1.2, 1.3,
	environmental impact of biodiesel for IC		2.4, 3.1, 3.3	1.4, 1.5, 1.6, 2.2
	engines.			
MEPL115.5	Evaluate the use and combustion	BL4	1.1, 2.1, 2.2, 2.3,	1.1, 1.2, 1.3,
	characteristics of alcohols in IC engines.		2.4, 3.1, 3.3	1.4, 1.5, 1.6, 2.2

Course Code	PO1	PO2	PO3	PSO1	PSO2
MEPL115.1	1	3	2	3	1
MEPL115.2	1	3	2	3	1
MEPL115.3	1	3	2	3	1
MEPL115.4	1	3	2	3	1
MEPL115.5	1	3	2	3	1

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: I
Energy Technology		
Course Name: Energy Economics & Policy Making	Course Code: MEPL116	Credit: 03
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 03 hours	Teaching Scheme: 3L+0T+0P	

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	World Energy Scenario and India Energy Scenario, Fossil Fuel Reserves - Estimates,	7
	Energy and Quality of Life, Energy Inequality, Energy Security	
3	Energy Economics - Simple Payback Period, Time Value of Money- discount rate,	7
	Criteria for Assessing Energy Projects, Net Present Value (NPV), Benefit/Cost Ratio	
	(B/C), Inflation, Internal Rate of Return (IRR)	
4	Resources & Reserves Growth Rates in Consumption, Estimates of Duration of Fossil	7
	Fuels, Peak oil, Materials used in renewable energy (Kuznet's Curve), Non-Renewable	
	Energy Economics	
5	Energy Policy: Preferences and Utility, Social factors, Public and private, pros and cons,	7
	Demand curves, Externalities	
6	Financing Energy – Debt/ Equity- Sources of funds, innovative financing models, Input-	8
	Output Analysis, Primary Energy Analysis, Net Energy Analysis	
7	Cost of Energy, Life Cycle Analysis of Bioenergy, Future energy scenarios and	8
	elements of sustainability	
	Total	45

Text Books:

- 1. Efstathios E. Michaelides, "Energy, the Environment, and Sustainability", CRC Press, 2018.
- 2. Jeffrey D. Sachs, Ki-moon Ban, "The Age of Sustainable Development", Columbia University Press, 2015.
- 3. Bala Bhaskar, "Energy Security and Economic Development in India", The Energy and Resources Institute, TERI.

Reference Books:

- 1. Subhes C. Bhattacharyya, "Energy Economics", Springer, 2011.
- 2. Conrad, J. M. Cambridge, "Resource Economics", Universities Press, New Delhi, 2010.
- 3. Mary Ann Curran, "Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products", Wiley, 2012.

- 1. Basic Arithmetic
- 2. Fundamental knowledge of energy and environment

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL116.1	Describe the present energy scenario and	BL2	1.1, 2.1, 2.3,	1.1, 1.3, 1.6, 2.1,
	energy security.		2.4, 3.2	2.3
MEPL116.2	Apply technical and quantitative approaches	BL3	1.3, 2.2, 2.3,	1.1, 1.3, 1.5, 2.2,
	to economics on various energy projects.		2.4, 3.2, 3.3	2.6, 2.7
MEPL116.3	Analyze the impact of environmental and	BL4	1.1, 2.1, 3.1,	1.2, 1.3, 1.5, 2.1,
	social factors on energy policy.		3.2, 3.3	2.2, 2.6, 2.7
MEPL116.4	Analyze the impact of financial factors on	BL4	1.1, 1.3, 2.1,	1.2, 1.3, 1.4, 2.1,
	energy economics.		2.3, 3.1, 3.2,	2.2, 2.5, 2.6
			3.3	
MEPL116.5	Apply Life cycle assessment (LCA) of	BL3	1.1, 1.3, 2.1,	1.2, 1.3, 1.6, 2.2,
	energy projects.		2.3, 3.1, 3.2,	2.4, 2.5, 2.6
			3.3	

Course Code	PO1	PO2	PO3	PSO1	PSO2
MEPL116.1	1	3	1	2	1
MEPL116.2	1	3	2	2	2
MEPL116.3	1	1	3	2	2
MEPL116.4	3	2	3	2	2
MEPL116.5	3	3	3	2	2

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: I	
Energy Technology			
Course Name: Optimization Techniques	Course Code: NP40.01	Credit: 03	
Max Marks: 100	CIE: 40	SEE: 60	
End Term Exam Time: 03 hours	Teaching Scheme: 3L+0T+0P		

Module No.	Contents	Hours
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Introduction to optimization: Engineering applications of optimization, Mathematical Modeling and simulation, Formulation of structural optimization problems as programming problems. Graphical method.	7
3	Linear Programming: Theory of Simplex Method, Standard form of LPP, feasible solution and basic feasible solution, Improving BFS, Optimality condition, Unbounded solution, Alternative optimal solution, Simplex method, Big M Method, Two phase method.	9
4	Metaheuristics in Optimization: Genetic algorithms, Tabu search, particle swarm intelligence and their applications in Engineering	8
5	PERT & CPM: Objective of CPM & PERT, elements of network, network rules, constraints, error in network, Critical Path Analysis, Activity time and floats, optimization through CPM techniques, PERT and three estimates, critical path analysis of a PERT network, probability of completion of project, controlling and monitoring.	9
6	Non-linear Programming: Local and global minima of one and two variables, constraints optimization, Lagrange's Method, K-T conditions, Steepest descent method, Conjugate gradient method.	11
	Total	45

Text Books:

- 1. S. S. Rao, Engineering Optimization: Theory and Practice, Wiley, 2008.
- 2. K. Deb, Optimization for Engineering design algorithms and Examples, Prentice Hall, 2nd Edition 2012.

Reference Books:

- 1. Operations Research, Hira& Gupta,
- 2. C.J. Ray, Optimum Design of Mechanical Elements, Wiley, 2007.
- 3. R. Saravanan, Manufacturing Optimization through Intelligent Techniques, Taylor & Francis Publications, 2006.
- 4. D. E. Goldberg, Genetic algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Longman Publishing, 1989.

Prerequisite:

1. Basic knowledge of calculus.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
NP40.01.1	Comprehend the basic concepts of	BL3	1.1, 1.3, 2.1,	1.1, 1.2, 1.3,
	Optimization Techniques and its importance in		2.3	1.4, 2.3
	Engineering Applications.			
NP40.01.2	Model various engineering problems as	BL3	1.1, 1.3, 2.1,	1.1, 1.2, 1.3,
	optimization problems and achieve optimal		2.3	1.4, 2.3
	solutions using the Simplex method, Revised			
	simplex method and Duality.			
NP40.01.3	Formulate Transportation, Assignment	BL3	1.1, 1.3, 2.1,	1.1, 1.2, 1.3,
	problems and dynamic programming problems		2.3	1.4, 2.3
	and achieve optimal solutions.			
NP40.01.4	Apply PERT and CPM to control and monitor	BL3	1.1, 1.3, 2.1,	1.1, 1.2, 1.3,
	projects effectively.		2.3	1.4, 2.3
NP40.01.5	Solve nonlinear programming problems using	BL3	1.1, 1.3, 2.1,	1.1, 1.2, 1.3,
	Lagrange's method, K-T conditions and		2.3	1.4, 2.3
	numerical methods like the Steepest descent			
	method and conjugate gradient method.			

Course	PO1	PO2	PO3	PSO1	PSO2
Code					
NP40.01.1	2	2	-	2	1
NP40.01.2	2	2	-	2	1
NP40.01.3	2	2	-	2	1
NP40.01.4	2	2	-	2	1
NP40.01.5	2	2	-	2	1

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: I
Energy Technology		
Course Name: Renewable Technology Lab	Course Code: MEPP130	Credit : : 02
Max Marks: 100	CIE: 60	SEE: 40
End Term Exam Time: 04 hours	Teaching Scheme: 0L+0T+4P	

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	4
2	Study of Conventional & Non-conventional energy systems.	8
3	Calculate the energy density of newly produced waste biomass briquettes and compare it with that of coal and diesel.	8
4	Study of a biomass gasifier, biogas digester and biogas appliances.	8
5	Estimation of solar radiation with the help of Pyranometer and Pyrheliometer and to check the variation with location and season.	8
6	To observe the variations in voltage and current and draw I-V and P-V characteristics for a single solar panel.	8
7	To draw I-V and P-V characteristics with series and parallel connections of two solar panels.	8
8	Measurement of wind speed and wind direction using an anemometer and wind vane.	4
9	Study on wind energy experimental setup.	4
	Total	60

Text Books:

- 1. G. D. Rai, "Non-Conventional Sources of Energy", Khanna Publishers.
- 2. D. P. Kothari, K. C. Singhal, and Rakesh Ranjan, "Renewable Energy Sources and Emerging Technologies" Prentice Hall India Pvt., Limited
- 3. S. P. Sukhatme and J. K. Nayak, "Solar Energy: Principles of Thermal Collection and Storage" TMH.

Reference Books:

- 1. Godfrey Boyle, "Renewable Energy" Oxford University Press.
- 2. G. D. Rai, "Solar Energy Utilization" Khanna Publishers.

- 1. Engineering Thermodynamics
- 2. Heat and mass transfer

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPP130.1	Demonstrate various renewable energy	BL3	1.1, 1.2, 2.2,	1.1, 1.2, 1.6,
	techniques.		2.3, 2.4, 3.2, 3.3	2.3, 2.6
MEPP130.2	Demonstration of various biomass	BL3	1.1, 1.2, 2.1,	1.1, 1.3, 1.5,
	utilization techniques and comparison with		2.3, 2.4, 3.2	2.3, 2.5, 2.7
	conventional fuels.			
MEPP130.3	Measure direct and diffused solar radiations	BL3	1.1, 1.2, 2.1,	1.1, 1.3, 1.5,
	and effect of variation in season.		2.3, 2.4, 3.2, 3.3	2.1, 2.3, 2.5, 2.7
MEPP130.4	Characterization of solar PV panels.	BL4	1.2, 2.2, 2.3,	1.2, 1.3, 1.4,
			2.4, 3.2, 3.3	1.5, 2.1, 2.2,
				2.5, 2.6, 2.7
MEPP130.5	Measure the speed and power generation	BL3	1.2, 2.2, 2.3,	1.2, 1.3, 1.4,
	capacity of the wind.		2.4, 3.2, 3.3	2.1, 2.2, 2.5,
				2.6, 2.7

Course Code	PO1	PO2	PO3	PSO1	PSO2
MEPP130.1	1	3	3	2	2
MEPP130.2	1	3	3	2	2
MEPP130.3	3	3	3	2	2
MEPP130.4	1	3	3	3	3
MEPP130.5	1	3	3	2	3

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: I
Energy Technology		
Course Name: Solar Photovoltaic Lab	Course Code: MEPP131	Credit : : 02
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 04 hours	Teaching Scheme: 0L+0T+4P	

Module No.	Contents	Hours
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	4
2	Study of solar photovoltaic module. Design a solar photovolatic system for a medium size commercial/residential/organizational buildings.	8
3	To demonstrate the I-V and P-V characteristics of PV Module	4
4	To demonstrate the I-V and P-V characteristics of PV module with varying insolation and temperature level	4
5	Study the effect of 'tilt angle' on the performance of solar photovolatic system in every 3 months.	8
6	To demonstrate the effect of shading on PV module output power.	8
7	Determination of maximum power point and fill factor of a solar photovoltaic module.	8
8	Analysis of the working of solar photovoltaic water pumping system	8
9	Analysis of working of grid-connected rooftop solar photovoltaic power system	4
10	Analysis of working of solar PV-based street lighting system	4
	Total	60

Text Books:

1. S. P. Sukhatme and J. K. Nayak, "Solar Energy: Principles of Thermal Collection and Storage" TMH.

Reference Books:

1. G. D. Rai, "Solar Energy Utilization" Khanna Publishers.

- 1. Engineering Thermodynamics
- 2. Heat and Mass Transfer

.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPP131.1	Study and design a solar PV system for a medium size building.	BL3	1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 2.1, 2.2, 2.3, 2.4, 2.6
MEPP131.2	Demonstrate the I-V, P-V characteristics and effect of various factors on the performance of a PV module.	BL4	1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 2.1, 2.2, 2.3, 2.4, 2.6
MEPP131.3	Determine the maximum power point and fill factor of a solar photovoltaic module.	BL4	1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 2.1, 2.2, 2.3, 2.4, 2.6
MEPP131.4	Analyze the working of solar photovoltaic water pumping system and solar PV-based street lighting system.	BL4	1.1, 1.2, 2.1, 2.2, 2.3, 3.1, 3.2	1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3
MEPP131.5	Analyze the working of grid-connected rooftop solar photovoltaic power system.	BL4	1.1, 1.2, 2.1, 2.2, 2.3, 3.1, 3.2	1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3

Course	PO1	PO2	PO3	PSO1	PSO2
Code					
MEPP131.1	3	3	3	3	3
MEPP131.2	3	3	3	3	3
MEPP131.3	3	3	3	3	3
MEPP131.4	3	3	3	3	2
MEPP131.5	3	3	3	3	2

Teaching and Examination Scheme I Year II Semester: M.Tech. (RET)

S. No.	Course Code	Course Name	Category	Teac Sch	chin eme	g			Mark	S	Credit
				L	Τ	Р	Exam Hrs	CIE	SEE	Total	
1	MEPL201	Wind Energy Technology	PCC	3	0	0	3	40	60	100	3
2	MEPL202	Fuel Cell Technology	PCC	3	0	0	3	40	60	100	3
		Elective-III:									
3	MEPL211 MEPL212	a. Analysis of Power Plants b. Green	PEC	3	0	0	3	40	60	100	3
	MEPL213	Buildings c. Advanced Photovoltaic Technology									
		Elective-IV:									
4	MEPL214 MEPL215 MEPL216	a. Solar Thermal Energy b. Electric Vehicle Technology c. Numerical	PEC	3	0	0	3	40	60	100	3
5	NP99.XX	AUDIT	МСС	MCC	-	-	-	3	40	60	100
6	MEPP230	Building Energy Simulation Lab	PCC	0	0	4	4	60	40	100	2
7	MEPP231	Solar Energy Simulation Lab	PCC	0	0	4	4	60	40	100	2
8	MEPD250	Mini Project with Seminar	REW	0	0	2	4	60	40	100	2
9	MEPA200	Social Outreach, Discipline & Extra Curricular Activities (SODECA)	SODECA							100	1
Tota	l Credit										19

<u>Syllabus</u>

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: II
Energy Technology		
Course Name: Wind Energy Technology	Course Code: MEPL201	Credit: 3
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 3 hrs.	Teaching Scheme: 3L+0T+0F)

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Wind Resource Assessment: Introduction to wind energy, Classifications of wind turbines and their construction. Wind characteristics and resources: General characteristics of wind resource, Wind data analysis and resource estimation, Wind measurements and instrumentations, Present status of wind energy in Rajasthan, India and the world.	8
3	Aerodynamics of Horizontal-Axis Wind Turbines: Mechanics of wind motion, Available power in the wind, One-dimensional momentum theory and Betz limit, Ideal horizontal axis wind turbine with wake rotation, Airfoils and general concepts of Aerodynamics: lift, drag, lift versus drag machines. Momentum theory and Blade Element Theory.	9
4	Electrical Aspects of Wind Turbines: Basic concepts of electrical power, Classification of generators, Synchronous generators, Induction generators, Variable speed generators, Power transformers, Power converters, Control systems, Embedded (dispersed) wind generation.	9
5	Wind Turbine Siting, System Design, and Integration: Wind turbine siting. Installation and operation issues. Wind farms. Design of wind farm and its integration with electrical grids. Offshore wind farms. Hybrid wind systems.	9
6	Environmental and Financial Aspects of Wind Energy: Environmental concern: Avian interaction with wind turbines, Visual impact of wind turbines, Wind turbine noise, Electromagnetic interference effects, Land-use environmental impacts, and Other environmental considerations. Financial aspects: Annual Energy Output (AEO), Time value of money, Capital recovery factor, Depreciation, Life cycle cost.	9
	Total	45

Text Books:

1. D. P. Kothari, "Wind Energy Systems and Applications", Narosa Publishing House

2. Siraj Ahmed, "Wind Energy: Theory and Practice", Prentice Hall India Learning Private Limited.

Reference Books:

- 1. E. Hau, "Wind Turbines: Fundamentals, Technologies, Application, Economics", Springer Berlin
- 2. J. F. Manwell, J. G. McGowan, and A. L. Rogers, "Wind energy explained: Theory, Design and Application", Wiley.

- 1. Fluid Mechanics
- 2. Basic Electrical Engineering

.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL201.1	Characterization of wind energy and wind	BL4	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4,
	data analysis, estimation, and measurement.		2.2, 3.1, 3.3	2.6
MEPL201.2	Apply the aerodynamic theories on wind	BL3	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4,
	machines and analyze the airfoil design.		2.2, 3.1, 3.3	2.6
MEPL201.3	Describe the various electrical aspects used in	BL2	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4,
	the windmill.		2.2, 3.1, 3.3	2.6
MEPL201.4	Analyze the different factors for site selection	BL4	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4,
	for windmill installation.		2.2, 3.1, 3.3	2.6
MEPL201.5	Explain the various environmental and	BL2	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4,
	financial concerns of windmill installation.		2.2, 3.1, 3.3	2.6

Course	PO1	PO2	PO3	PSO1	PSO2
Code					
MEPL201.1	3	2	2	-	2
MEPL201.2	3	2	2	-	2
MEPL201.3	3	2	2	-	2
MEPL201.4	3	2	2	-	2
MEPL201.5	3	2	2	-	2

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: II
Energy Technology		
Course Name: Fuel Cell Technology	Course Code: MEPL202	Credit: 3
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 3 hrs.	Teaching Scheme: 3L+0T+0P)

Module	Contents	Hours
<u> </u>	Introduction: Objective Scope Outcome of the Course and Prerequisite	1
2	Fuel Cells: Fuel cells basics, relevance and importance. Stack design, gas supply, and	8
4	ruer cens. Fuer cens basics, felevance and importance. Stack design, gas supply, and	0
	cooling, classification of fuel cens. Electrochemistry basis of fuel cens. Efficiency and	
	open circuit voltage. Influence of pressure and gas concentration: Nernst Equation,	
	hydrogen partial pressure. Voltage-current behavior of fuel cell, Fuel-cell irreversibility.	
	Applications of small, medium and large size fuel cell technology	
3	Alkaline Fuel Cell (AFC): Description, working principle, components, general	9
	performance characteristics, operating temperature and pressure. Ammonia as AFC fuel	
4	Phosphoric Acid Fuel Cell (PAFC): System design: Fuel processing, fuel utilization.	9
	Principles of Operation: electrolyte, electrode, catalyst, stack construction, stack cooling	
	& manifold. Performance: operating pressure & temperature, effects of carbon monoxide	
	and Sulphur.	
5	High-Temperature Fuel Cells: Solid Oxide Fuel Cell (SOFC): History, benefits and	9
	limitations, cell components, Cathode and Anode materials, fuel, configuration and	
	performance. Environmental impact of SOFC. Application and future of SOFC. Molten	
	Carbonate Fuel Cell (MCFC): General principle, cell components, mechanisms of	
	electrode reactions Influence of pressure & temperature status of MCEC	
6	Proton-Exchange Membrane Fuel Cell (PEMEC): Principles of operation Electrodes	9
U	⁶ electro des structure componente. Weter menocomente cooling and sin supply	,
	a electrodes structure, components. water management, cooling and air supply.	
	Introduction to Direct Methanol Fuel Cell (DMFC).	
	Total	45

Text Books:

1. B. Viswanathan and M. Aulice Scibioh, "Fuel Cells: Principles and Applications", Universities Press.

Reference Books:

- 1. Suddhasatwa Basu, "Recent Trends in Fuel Cell Science and Technology", Springer.
- 2. Ewa Rudnik, "Direct Methanol Fuel Cell Technology", Elsevier.

Prerequisite:

1. Thermodynamics

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	PO	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL202.1	Describe the basics of fuel cell	BL2	2.1	1.1, 1.2, 1.3, 1.4, 1.5,
	technology, classification, and its			1.6, 2.2
	efficiency.			
MEPL202.2	Describe the components and working	BL2	2.1	1.1, 1.2, 1.3, 1.4, 1.5,
	principles of an Alkaline Fuel Cell.			1.6, 2.2
MEPL202.3	Describe the components and working	BL2	2.1	1.1, 1.2, 1.3, 1.4, 1.5,
	principles of Phosphoric Acid Fuel			1.6, 2.2
	Cell.			
MEPL202.4	Compare the construction and working	BL2	2.1	1.1, 1.2, 1.3, 1.4, 1.5,
	of a Solid Oxide fuel cell and a Molten			1.6, 2.2
	Carbonate fuel cell.			
MEPL202.5	Describe the components and working	BL2	2.1	1.1, 1.2, 1.3, 1.4, 1.5,
	principles of the Proton-Exchange			1.6, 2.2
	Membrane fuel cell.			

Course Code	PO1	PO2	PO3	PSO1	PSO2
MEPL202.1	-	1	-	3	1
MEPL202.2	-	1	-	3	1
MEPL202.3	-	1	-	3	1
MEPL202.4	-	1	-	3	1
MEPL202.5	-	1	-	3	1

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: II
Energy Technology		
Course Name: Analysis of Power Plants	Course Code: MEPL211	Credit: 3
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 3 hrs.	Teaching Scheme: 3L+0T+0P)

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Introduction: Power and energy, sources of energy, review of thermodynamic cycles related to power plant. Load estimation, load curves, various terms and factors involved in power plant calculations. Effect of variable load on power plant operation, Selection of power plant units. Power plant economics and selection	8
3	Steam Power Plant: General layout of steam power plant, Power plant boilers including critical and super-critical boilers. Fluidized bed boilers, Different systems such as coal handling system, pulverisers and coal burners, combustion system, draft, ash handling system, Dust collection system, Feed water treatment and condenser and cooling towers and cooling ponds, Turbine auxiliary systems such as governing, feed heating, reheating, flange heating and gland leakage. Operation and maintenance of steam power plant, heat balance and efficiency, Site selection of a steam power plant. A case study to realize above concepts.	9
4	Hydroelectric and Non-Conventional Power Plants: Hydroelectric power plants, classification, typical layout and components, Types of turbine- Pelton, Francis, Kaplan, Propeller, Deriaz and Bulb turbines. Performance of turbines and comparison. A case study to realize above concepts.	9
5	Diesel and Gas Turbine Power Plants: General layout of Diesel and Gas Turbine power plants, Performance of Diesel and Gas Turbine power plants, comparison with other types of power plants	9
6	Nuclear power plant: Layout and subsystems of nuclear power plants, Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANDU Reactor, Pressurized Heavy Water Reactor (PHWR), Fast Breeder Reactors (FBR), gas-cooled and liquid metal cooled reactors, safety measures for nuclear power plants.	9
	Total	45

Text Books:

1. P.K. Nag, "Power Plant Engineering", McGraw Hill.

Reference Books:

1. P.K. Das, A.K. Das, "An Introduction to Thermal Power Plant Engineering and Operation", Notion Press.

2. G. D. Rai, "Non-Conventional Sources of Energy", Khanna Publishers.

- 3. M. M. El Wakil, "Power Plant Technology", McGraw Hill.
- 4. R. K. Rajput, "A Textbook of Power Plant Engineering", Laxmi Publications.

- 1. Engineering Thermodynamics
- 2. Steam Engineering
- 3. Renewable Energy

.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	PO	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL211.1	Calculate the performance parameters and plot	BL3	1.1, 1.2, 1.3,	1.1, 1.2, 1.3
	load duration curves of a power plant.		2.1, 2.2, 2.3,	
MEPL211.2	Describe the components of a steam generation	BL2	1.1, 1.2, 1.3,	1.1, 1.2, 1.3
	power plant and associated systems.		2.1, 2.2, 2.3,	
MEPL211.3	Analyze the performance of hydro-electric power	BL4	1.1, 1.2, 1.3,	1.1, 1.2, 1.3
	plant under various operating and geographical		2.1, 2.2, 2.3,	
	conditions.			
MEPL211.4	Analyze the performance of diesel and gas power	BL4	1.1, 1.2, 1.3,	1.1, 1.2, 1.3
	plants, and compare with the other power plants.		2.1, 2.2, 2.3,	
MEPL211.5	Describe the layout and subsystems of a nuclear	BL2	1.1, 1.2, 1.3,	1.1, 1.2, 1.3
	power plant.		2.1, 2.2, 2.3,	

Course	PO1	PO2	PO3	PSO1	PSO2
Code					
MEPL211.1	3	3	-	2	-
MEPL211.2	3	3	-	2	-
MEPL211.3	3	3	-	2	-
MEPL211.4	3	3	-	2	-
MEPL211.5	3	3	-	2	-

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: II
Energy Technology		
Course Name: Green Buildings	Course Code: MEPL212	Credit: 3
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 3 hrs.	Teaching Scheme: 3L+0T+0P)

Module	Contents	Hours
1NO.	Introduction: Objective Scope Outcome of the Course and Prerequisite	1
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Introduction : Definition, Environmental implications of buildings energy, carbon emissions,	0
	water use, waste disposal; Building materials, environmental implications. Embodied Energy	
	in Building Materials: Transportation Energy for Building Materials; Energy requirement for	
	Buildings Maintenance	
3	Comforts in Building: Thermal Comfort in Buildings-Issues; Heat Transfer Characteristic	8
	of Building Materials. Incidence of Solar Heat on Buildings-Implications of Geographical	
	Locations. Utility of Solar energy in buildings: Concepts of Solar Passive Cooling and	
	Heating of Buildings. Low Energy Cooling. Case studies of Solar Passive Cooled and Heated	
	Buildings	
4	Green Building Techniques: Concepts of Green Composites. Water Utilisation in	10
	Buildings, Low Energy Approaches to Water Management. Management of Solid Wastes.	
	Management of Sewage. Urban Environment and Green Buildings. Green Cover and Built	
	Environment. Rain Water Harvesting, Solar PV systems, Solar Water Heaters	
5	Green Building Rating Systems: Features of green building rating systems in India: Indian	10
	Green Building Council (IGBC) standards, Green Rating for Integrated Habitat Assessment	
	(GRIHA), & LEED (Leadership in Energy and Environmental Design), ASHRAE standards	
	etc. Sustainable site, water, energy, material, and indoor environment issues for green	
	buildings; Intent and documentation for credits/points for green rating systems; Difference in	
	evaluation and documentation for new construction and existing buildings. Green home	
	rating, green factory rating, green neighborhood concept	
6	Concept of Net Zero Energy Building: Costs of green buildings. Energy Conservation	8
	Building Code: requirements of code, applicability, compliance options: prescriptive, trade-	
	off, whole building performance routes for compliance. A case study to realize above	
	concepts.	
	Total	45

Text Books:

1. Green construction project management and cost oversight by Sam Kubba.

2. Introduction to green buildings and built environment by Indian green building council.

Reference Books:

- 1. Handbook of Green Building Design and Construction Author: Sam Kubba.
- 2. Handbook of Green Building Design and Construction LEED, BREEAM, and Green Globes.
- 3. Life-Cycle Cost Models for Green Buildings with Optimal Green Star Credits.
- 4. Green Building: Principles & Practices by Dr. Adv. Harshul Savla.

- 1. Refrigeration & Air Conditioning.
- 2. Energy Management.

.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL212.1	Describe concepts and techniques	BL2		1.1, 1.2, 1.3, 1.4,
	related to energy efficiency in green			1.5, 1.6, 2.2
	buildings practices.			
MEPL212.2	Analyze various factors affecting the	BL4	1.2, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	comfort in buildings.		2.3, 3.2	1.5, 1.6, 2.2
MEPL212.3	Select appropriate green building	BL3	1.2, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	materials and techniques.		2.3, 3.2	1.5, 1.6, 2.2
MEPL212.4	Assess green buildings and rate them as	BL4	1.2, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	per IGBC and other standards.		2.3, 3.2	1.5, 1.6, 2.2
MEPL212.5	Describe concepts and techniques	BL2	1.2, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	related to net zero energy building.		2.3, 3.2	1.5, 1.6, 2.2

Course	PO1	PO2	PO3	PSO1	PSO2
Code					
MEPL212.1	-	-	-	3	1
MEPL212.2	1	3	1	3	1
MEPL212.3	1	3	1	3	1
MEPL212.4	1	3	1	3	1
MEPL212.5	1	3	1	3	1

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: II
Energy Technology		
Course Name: Advanced Photovoltaic Technology	Course Code: MEPL213	Credit: 3
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 3 hrs.	Teaching Scheme: 3L+0T+0P)

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Overview of different types of solar cells/panels. Photovoltaic industries in India and the	8
	World. International certification of solar panels and Indian scenario	
3	Wafer-based silicon solar cells and its market trend. Cost breakup of wafer-based solar	9
	panels, future trends. Concentrator solar cells, reflector and lens-based versions.	
	Performance in Indian climatic conditions. Low, medium and high concentration,	
	combined thermal and concentration PV system	
4	Semi-transparent solar cells and related materials, applications in buildings (BIPV), thin	9
	film and wafer-based versions, appearance and structure of thin film solar cells, Flexible	
	solar cells	
5	Multi-junction solar cells, its working principles. Hetero-junction with an intrinsic thin	9
	layer (HIT) solar cells, structure and working principle, comparison with conventional	
	bulk solar cells, bi-facial solar cells	
6	Polymer, organic, dye-sensitized, and quantum dot solar cells,	9
	structure, working principle, present applications, near-future trends. New SPV materials	
	availability, Efficiency and cost estimation. Cooling and cleaning of SPV Panels. Daily	
	and weekly tracking. Shading of solar panels	
	Total	45

Text Books:

- 1. Solar Photovoltaics: Fundamentals, Technologies and Application, Chetan Singh Solanki, PHI Learning, 3rd Edition, 2015.
- 2. Solar Cell Technology and Applications, A.R .Jha, CRC Press, 1st Edition, 2009.

Reference Books:

1. John Balfour, Michael Shaw, and Sharlene Jarosek, "Introduction to Photovoltaics", Jones and Bartlett Publishers.

2. Antonio Luque and Viacheslav Andreev, "Concentrator Photovoltaic", Springer.

- 1. Engineering Thermodynamics
- 2. Engineering Mechanics
- 3. Engineering Chemistry
- 4. Solar photovoltaic

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPL213.1	Explore the advancement in photovoltaic	BL2	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	technology and global potential.		2.1, 2.2, 3.1,	1.4
			3.3	
MEPL213.2	Describe concentrated solar cells and integration	BL2	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	of PV technology with solar thermal.		2.1, 2.2, 3.1,	1.4, 1.6
			3.3	
MEPL213.3	Utilize thin film technology in building	BL3	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	integrated photovoltaic solar panels.		2.1, 2.2, 3.1,	1.4
			3.3	
MEPL213.4	Compare multi junction and hetero junction	BL4	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	solar cells with conventional solar cells.		2.1, 2.2, 3.1,	1.4
			3.3	
MEPL213.5	Discover the latest advancement in solar cell	BL4	1.1, 1.2, 1.3,	1.1, 1.2, 1.3,
	materials and future trends.		2.1, 2.2, 3.1,	1.4, 1.6
			3.3	

Course Code	PO1	PO2	PO3	PSO1	PSO2
MEPL213.1	3	3	3	3	-
MEPL213.2	3	3	3	3	-
MEPL213.3	3	3	3	3	-
MEPL213.4	3	3	3	3	-
MEPL213.5	3	3	3	3	-

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: II
Energy Technology		
Course Name: Solar Thermal Energy	Course Code: MEPL214	Credit: 3
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 3 hrs.	Teaching Scheme: 3L+0T+0P)

Module	Contents	Hours
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Solar Radiation: Solar radiation outside the Earth's atmosphere and at the Earth's surface. Solar Radiation Geometry, sunrise, sunset, day length, Local Apparent Time. Empirical equations for predicting the availability of solar radiation: Monthly average daily global radiation, monthly average daily diffuse radiation, monthly average hourly global radiation, and monthly average hourly diffuse radiation. Hourly global, beam, and diffuse radiation under cloudless skies. Solar radiation on tilted surfaces	9
3	Liquid Flat-Plate Collectors (FPC): Introduction of FPC, Performance analysis, Transmissivity of the cover system: Transmissivity based on reflection, refraction, absorption, and diffuse radiation. Transmissivity - Absorptivity product. Overall loss coefficient. Effects of various parameters on performance (Selective surfaces, Number of covers, Spacing, Effect of shading, collector tilt, Fluid inlet temperature, Cover transmissivity, Dust on the top cover). Alternatives to FPC (Evacuated Tube Collectors), Solar water heaters	9
4	Solar Air Heaters: Introduction, various types of solar air heaters, Matrix air heater. Plastic air heater. Inflatable-tunnel plastic solar heater, Solar dryer, Solar Cookers	9
5	Concentrating Collectors: Concentrating collectors for medium and high-temperature applications. Line-focusing and point-focusing concentrators: Cylindrical parabolic collector, compound parabolic collector (CPC), paraboloid dish collector, Central Receiver Collector (heliostat field with central receiver), Linear Fresnel lens collector, Circular Fresnel lens concentration	8
6	Thermal Energy Storage: Introduction to three basic methods for storing thermal energy. Sensible heat storage in liquids & solids, Thermal Stratification. Latent Heat Storage. Thermochemical Storage. Solar pond, its principle of working, and solar pond electric-power plant.	9
	Total	45

Text Books:

1. H. P. Garg and J. Prakash, "Solar Energy: Fundamentals and applications" McGraw-Hill Education.

2. Sukhatme & Nayak, "Solar Energy: Principles of thermal collection & storage" TMH.

3. G. D. Rai, "Solar Energy Utilization" Khanna Publishers.

Reference Books:

- 1. John A. Duffie and William A. Beckman, "Solar Engineering of Thermal Processes" Pearson
- 2. G. D. Rai, "Non-Conventional Sources of Energy", Khanna Publishers.

- 1. Engineering Thermodynamics
- 2. Heat and Mass transfer
- 3. Renewable Energy

.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO Performance
Code		Level	Performance	Indicators
			mulcators	
MEPL214.1	Analyze various sun-earth geometrical	BL4	3.1	1.1, 1.2, 1.3,1.4, 1.6
	parameters that affect solar radiation.			
MEPL214.2	Analyze the performance parameters of flat	BL4	3.1	1.1, 1.2, 1.3, 1.4, 1.6
	plate collectors.			
MEPL214.3	Explain the construction and application of	BL2		1.1, 1.2, 1.3, 1.4, 1.6
	solar air heater and its applications.			
MEPL214.4	Design concentrating solar collectors for	BL4	3.1	1.1, 1.2, 1.3, 1.4, 1.6,
	high-temperature applications.			2.3, 2.4
MEPL214.5	Categorize the different solar thermal energy	BL4		1.1, 1.2, 1.3, 1.4, 1.6
	storage techniques and other solar thermal			
	applications.			

Course	PO1	PO2	PO3	PSO1	PSO2
Code					
MEPL214.1	-	-	1	3	-
MEPL214.2	-	-	1	3	-
MEPL214.3	-	-	-	3	-
MEPL214.4	-	-	1	3	1
MEPL214.5	-	-	-	3	-

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: II
Energy Technology		
Course Name: Electric Vehicle Technology	Course Code: MEPL215	Credit: 3
Max Marks: 100	CIE: 40	SEE: 60
End Term Exam Time: 3 hrs.	Teaching Scheme: 3L+0T+0P)

Module	Contents	Hours
1 1	Introduction: Objective Scope Outcome of the Course and Prerequisite	1
2	Components of Electric Vehicle: Comparison of EV with conventional	7
4	patrol/diagol/CNG webiele on performance fuel consumption life evale cost and	/
	anvironment sensets. Components of a conventional vahiale and propulsion load; power	
	troin of HEV and EV; officiancy considerations for a conventional vehicle. HEV and EV;	
	that of TEV and EV, efficiency considerations for a conventional vehicle, TEV and EV, multi-motor in wheel EV impost and henefits of EV on utility grid	
	multi-motor mi-wheel EVs, impact and benefits of EV on utility grid	
3	On-board Chargers: Semiconductor devices; turn-on and turn-off characteristics; loss	9
	computation in semiconductor devices; basics of non-isolated/isolated DC-DC and grid-	
	connected converters; classification of EV chargers; modeling and control of bi-	
	directional DC-DC converters; discussions on V2X applications	
4	Induction Motor Drives: Basics of induction motor; open-loop V/f control; basics of	9
	DC-AC power converters; basic pulse width modulation techniques; vector control of IM	
	drives; advanced control techniques	
5	Battery Management: Types of batteries, Effects of Current Density on Battery	10
	Formation, Effects of Heat on Battery Cycle Life, Battery Storage, Lithium-ion Battery,	
	Traction Battery Pack Design, Battery Capacity, capacity-tests, effect of temperature on	
	Battery Capacity, Recovery of Capacity, Energy Balances for the Electric Vehicle,	
	Discharge Characteristics of Li-ion Battery and Battery Pack, Effect of cold weather on	
	battery capacity and discharging, Environment issues with battery disposal.	
6	Fuel Cells for Electric vehicles: Fuel cell - Introduction, Technologies & Types,	9
	Obstacles. Operation principles, Potential and I-V curve, Fuel and Oxidation	
	Consumption, Power design of fuel Cell Vehicle and freeze capacity. The lifetime cost of	
	Fuel Cell Vehicle - System, components, maintenance. Comparison with battery EV	
	Total	45

Text Books:

1. J. Larminie and J. Lowry, "Electric vehicle technology explained", 2nd edition, Wiley, 2012.

Reference Books:

- 1. Ali Emadi, "Advanced Electric Drive Vehicles", CRC Press 2015
- 2. Iqbal Husain, "Electric and Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press.2011
- 3. R Krishnan, "Permanent Magnet Synchronous and Brushless DC Motor Drives", CRC Press 2010.
- 4. Jack Erjavec and Jeff Arias, "Hybrid, Electric and Fuel Cell Vehicles", Cengage Learning, 2012.
- 5. Sandeep Dhameja, "Electric Vehicle Battery Systems", Newnes Publishing, 2002.

Prerequisite:

1. Basic knowledge of vehicles working principles.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	PO Performance	PSO
Code		Level	Indicators	Performance
				Indicators
MEPL215.1	Compare conventional vehicles with HEV	BL4	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4,
	and EV, evaluating efficiency and grid		2.2, 3.1, 3.3	2.6
	integration challenges.			
MEPL215.2	Classify EV chargers and modeling of bi-	BL4	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4,
	directional DC-DC converters for efficient		2.2, 3.1, 3.3	2.6
	V2X applications.			
MEPL215.3	Apply V/f control, pulse width modulation,	BL3	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4,
	and vector control techniques for precise		2.2, 3.1, 3.3	2.6
	motor operation and efficiency.			
MEPL215.4	Analyze battery management for different	BL4	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4,
	EV applications.		2.2, 3.1, 3.3	2.6
MEPL215.5	Integrate fuel cell technology in EV	BL4	1.1, 1.2, 1.3, 2.1,	2.2, 2.3, 2.4,
	application.		2.2, 3.1, 3.3	2.6

Course	PO1	PO2	PO3	PSO1	PSO2
Code					
MEPL215.1	3	2	2	-	2
MEPL215.2	3	2	2	-	2
MEPL215.3	3	2	2	-	2
MEPL215.4	3	2	2	-	2
MEPL215.5	3	2	2	-	2

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: II
Energy Technology		
Course Name: Numerical Methods	Course Code: MEPL216	Credit:3
Max Marks: 100	CIE: 40 SEE: 60	
End Term Exam Time: 3 Hours	Teaching Scheme: 3L+0T+0P	

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	1
2	Approximations: Accuracy and precision, definitions of round-off and truncation errors, error propagation	7
3	Algebraic Equations: Formulation and solution of linear algebraic equations, Gauss elimination, LU decomposition, iteration methods (Gauss-Siedel), convergence of iteration methods, Eigen values, and Eigen vectors	10
4	Interpolation Methods: Newton's divided difference, interpolation polynomials, and Lagrange interpolation polynomials.	9
5	Differentiation and Integration: High accuracy differentiation formulae, extrapolation, derivatives of unequally spaced data, Gauss quadrature, and integration.	9
6	Introduction to Optimization Methods: Local and global minima of one and two variables, constraints optimization, Lagrange's Method, K-T conditions, Steepest descent method, Conjugate gradient method.	9
	Total	45

Text Books:

- 1. S. K. Gupta, "Numerical Methods for Engineers", New Age International Publishers.
- 2. M. K. Jain, Satteluri R. K. Iyengar, R. K. Jain, "Numerical Methods: Problems & Solutions", New Age International Publishers.

Reference Books:

- 1. A. Gourdin and M. Boumahrat, "Applied Numerical Methods", PHI.
- 2. S. S. Rao, "Engineering Optimization: Theory and Practice", New Age International Publishers.
- 3. P.K. Gupta and D.S. Hira, "Operations Research", S. Chand Publishers.

Prerequisite:

1. Basics of Numerical Methods

.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance Indicators	Performance Indicators
MEPL216.1	Apply appropriate error-handling techniques in	BL3	1.1, 1.3, 2.1,	1.3, 1.4
	computations.		2.3	
MEPL216.2	Derive Eigen values and Eigen vectors and solutions	BL3	1.1, 1.3, 2.1,	1.3, 1.4
	of linear algebraic equations by using Gauss		2.3	
	elimination, LU decomposition, Gauss – Siedel			
	methods			
MEPL216.3	Employ Newton's and Lagrange's interpolation	BL3	1.1, 1.3, 2.1,	1.3, 1.4
	methods to obtain interpolation polynomials		2.3	
MEPL216.4	Apply interpolation methods for numerical	BL3	1.1, 1.3, 2.1,	1.3, 1.4
	derivatives and Gauss quadrature method for		2.3	
	numerical integration			
MEPL216.5	Implement Lagrange's method & K-T conditions for	BL3	1.1, 1.3, 2.1,	1.1, 1.2, 1.3,
	constrained optimization and steepest descent &		2.3	1.4, 2.3
	conjugate gradient methods for unconstrained			
	optimization			

Course Code	PO1	PO2	PO3	PSO1	PSO2
MEPL216.1	2	2	-	1	
MEPL216.2	2	2	-	1	
MEPL216.3	2	2	-	1	
MEPL216.4	2	2	-	1	
MEPL216.5	2	2	-	2	1

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: II
Energy Technology		
Course Name: Building Energy Simulation Lab	Course Code: MEPP230	Credit: 2
Max Marks: 100	CIE: 60	SEE: 40
End Term Exam Time: 4 hrs.	Teaching Scheme: 0L+0T+4P	

Module	Contents	Hours
No.		
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	4
2	Case study on heating and cooling energy calculations of a building	8
3	Modeling and simulation of a building energy consumption.	8
4	Case study on the energy supply system of a building	8
5	Field visit I: Visit of domestic energy efficient/green building and report writing	8
6	Field visit II: Visit of commercial energy efficient building and report writing	8
7	A project on small scale building design, modeling and simulation using different	16
	software.	
	Total	60

Text Book:

1. Vishal Garg, "Building Energy Simulation", CRC Press.

Reference Books:

1. V.S.K.V. Harish, Arun Kumar, "Green Building Energy Simulation and Modeling", Elsevier Science

Prerequisite:

1. Basic knowledge about the different types of energy loads on the buildings

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	PO	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPP230.1	Estimate heating and cooling requirements	BL4	1.2, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	for a building.		2.3, 2.4, 3.1,	1.5, 1.6, 2.2
			3.2, 3.3	
MEPP230.2	Apply energy modelling and simulation	BL4	1.2, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	technologies to analyze the energy		2.3, 2.4, 3.1,	1.5, 1.6, 2.2
	performance of buildings.		3.2, 3.3	
MEPP230.3	Identify building Heating, Ventilating, and	BL3	1.2, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	Air-Conditioning (HVAC) systems in a		2.3, 2.4, 3.1,	1.5, 1.6, 2.2
	real-time building project.		3.2, 3.3	
MEPP230.4	Prepare the reports of field visits.	BL2	1.2, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
			2.3, 2.4, 3.1,	1.5, 1.6, 2.2
			3.2, 3.3	
MEPP230.5	Develop a model of energy-efficient	BL4	1.2, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	building.		2.3, 2.4, 3.1,	1.5, 1.6, 2.1, 2.2,
	_		3.2, 3.3	2.3, 2.4, 2.5, 2.6,
				2.7

Course	PO1	PO2	PO3	PSO1	PSO2
Code					
MEPP230.1	1	3	3	3	1
MEPP230.2	1	3	3	3	1
MEPP230.3	1	3	3	3	1
MEPP230.4	1	3	3	3	1
MEPP230.5	1	3	3	3	3

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: II
Energy Technology		
Course Name: Solar Energy Simulation Lab	Course Code: MEPP231	Credit: 2
Max Marks: 100	CIE: 60	SEE: 40
End Term Exam Time: 4 hrs.	Teaching Scheme: 0L+0T+4P	

Module	Contents	Hours
1	Introduction: Objective, Scope, Outcome of the Course and Prerequisite	4
2	Study and simulation of flat plate collector and evacuated tube collector.	8
3	Study and simulation of a box-type solar cooker and calculation of its thermal efficiency.	8
4	Study and simulation of natural and forced convection-type solar water heaters.	8
5	Study and simulation of natural and forced convection type solar dryers and heaters.	8
6	Simulation of grid-connected 1 MW solar photovoltaic power plant using PVSyst software.	8
7	Field visit I: A case study and report writing on a grid-connected rooftop solar photovoltaic power plant.	6
8	Field visit II: A case study and report writing on a commercial solar power plant.	6
9	Design and Suggest a solar system to meet energy requirements of a family of four	4
	people.	
	Total	60

Text Books:

1. Jyoti Prakash Srivastava, "Step by Step Guide to Solar Simulation Software PVsyst - Practical Approach to Solar Simulation" (e-book).

Reference Books:

- 1. K Sudhakar, Tulika Srivastava, Kavali Janardhan, "MATLAB Modelling and Simulation of Solar Photovoltaic Panel", Lambert.
- 2. Laurentiu Fara, Masafumi Yamaguchi, "Advanced Solar Cell Materials, Technology, Modeling, and Simulation (Advances in Chemical and Materials Engineering)", Idea Group, U.S.
- 3. Weidong Xiao, "Photovoltaic Power System: Modeling, Design, and Control", Wiley

Prerequisite:

1. Basic knowledge of thermal systems, thermal engineering, and engineering materials.

.

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	РО	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPP231.1	Modeling and simulation of different solar	BL4	1.2, 2.1, 2.2,	1.1, 1.2, 1.3,
	collectors.		2.3, 2.4, 3.1,	1.4, 1.5, 1.6,
			3.2, 3.3	2.2
MEPP231.2	Analyze the results provided by the simulation of	BL4	1.2, 2.1, 2.2,	1.1, 1.2, 1.3,
	box-type solar cookers.		2.3, 2.4, 3.1,	1.4, 1.5, 1.6,
			3.2, 3.3	2.2
MEPP231.3	Analyze the results provided by simulation of	BL4	1.2, 2.1, 2.2,	1.1, 1.2, 1.3,
	solar water heaters and solar dryers.		2.3, 2.4, 3.1,	1.4, 1.5, 1.6,
			3.2, 3.3	2.2
MEPP231.4	Analyze the performance of grid-connected	BL4	1.2, 2.1, 2.2,	1.1, 1.2, 1.3,
	photovoltaic plant with the help of simulation		2.3, 2.4, 3.1,	1.4, 1.5, 1.6,
	software.		3.2, 3.3	2.2
MEPP231.5	Experience the installation of actual solar	BL2	1.2, 2.1, 2.2,	1.1, 1.2, 1.3,
	PV/thermal projects.		2.3, 2.4, 3.1,	1.4, 1.5, 1.6,
			3.2, 3.3	2.1, 2.2, 2.3,
				2.4, 2.5, 2.6,
				2.7

Course	PO1	PO2	PO3	PSO1	PSO2
Code					
MEPP231.1	1	3	3	3	1
MEPP231.2	1	3	3	3	1
MEPP231.3	1	3	3	3	1
MEPP231.4	1	3	3	3	1
MEPP231.5	1	3	3	3	3

Name of the Programme: M.Tech. in Renewable	Year: I	Semester: II
Energy Technology		
Course Name: Mini Project with Seminar	Course Code: MEPD250	Credit: 2
Max Marks: 100	CIE: 60	SEE: 40
End Term Exam Time: 4 hrs.	Teaching Scheme: 0L+0T+2P	

Contents:

- 1. Literature Review
- 2. Presentation
- 3. Report writing
- 4. Publication of papers

After successful completion of course students will be able to

Course	Course Outcomes	Bloom's	PO	PSO
Code		Level	Performance	Performance
			Indicators	Indicators
MEPD250.1	Search literature on various cutting-	BL3	1.1, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	edge technologies and contemporary		2.3, 2.4, 3.1,	1.5, 1.6, 2.1, 2.2,
	issues from various databases, books,		3.2, 3.3	2.3, 2.4, 2.5, 2.6, 2.7
	journals, etc.			
MEPD250.2	Compile the literature to reach a valid	BL3	1.1, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	conclusion.		2.3, 2.4, 3.1,	1.5, 1.6, 2.1, 2.2,
			3.2, 3.3	2.3, 2.4, 2.5, 2.6, 2.7
MEPD250.3	Analyse critically the assumptions,	BL4	1.1, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	hypotheses, and arguments of previous		2.3, 2.4, 3.1,	1.5, 1.6, 2.1, 2.2,
	authors.		3.2, 3.3	2.3, 2.4, 2.5, 2.6, 2.7
MEPD250.4	Describe the collection of evidence to	BL4	1.1, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	draw conclusions consistent with the		2.3, 2.4, 3.1,	1.5, 1.6, 2.1, 2.2,
	relevant text.		3.2, 3.3	2.3, 2.4, 2.5, 2.6, 2.7
MEPD250.5	Communicate effectively the work	BL4	1.1, 2.1, 2.2,	1.1, 1.2, 1.3, 1.4,
	done in the form of a report.		2.3, 2.4, 3.1,	1.5, 1.6, 2.1, 2.2,
	_		3.2, 3.3	2.3, 2.4, 2.5, 2.6, 2.7

Mapping of COs with POs-PSOs:

Course Code	PO1	PO2	PO3	PSO1	PSO2
MEPD250.1	1	3	3	3	3
MEPD250.2	1	3	3	3	3
MEPD250.3	1	3	3	3	3
MEPD250.4	1	3	3	3	3
MEPD250.5	1	3	3	3	3
